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ABSTRACT 

An approach to position tracking control based on a 
cascade of a nonlinear force tracking controller derived from a 
near input-output linearization framework and a simple 
feedback plus feed forward position controller is presented. The 
method exploits the cascade structure to employ a sliding mode 
pressure force tracking controller as inner-loop and the position 
tracking controller as an outer-loop. Furthermore, it is 
highlighted that Lyapunov backstepping analysis can be used to 
drive performance bounds and reveal trade-offs between the 
size of uncertainty and measurement errors and the tracking 
accuracy. The performance of the proposed cascaded robust 
controller is demonstrated with experiments and simulations on 
a test system that doesn’t necessarily satisfy all of the 
assumptions made for controller derivation. In particular, a 
typical comparison of the robust and nominal cascade 
controllers shows the robust version can recover the 
performance of the nominal near IO linearizing controller. In 
addition, model simulation results are included to show the 
performance of the controller in the presence of some 
combinations of perturbations or difficult to estimate 
parameters such as valve coefficient, supply pressure, piston 
friction, and inclusion of servovalve spool dynamics. 

Key words: electrohydraulic actuators, sliding mode 
control, cascade position control, feedback linearization 

INTRODUCTION 
Electrohydraulic actuators constitute important positioning 

and force generation elements in a variety of industrial 
applications. However, they exhibit significant nonlinearities in 
their dynamics that may necessitate the use of improved control 
techniques to achieve accurate positioning and force tracking 
objectives. 

Various such techniques have been investigated in the 
literature including optimal linear state feedback [1], adaptive 
control [1-5], variable structure control [6, 7] and Lyapunov-
based controller designs [2, 4, 8-10]. Each approach has its own 
strengths and limitations, which are outlined in the respective 
references. The approach presented in this paper combines the 
features of feedback linearization [11-14], sliding mode force 
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tracking control [6-8, 15, 16] and application of cascade control 
to electrohydraulics [17-20]. 

The cascade control of hydraulic actuator piston position 
employing classical and linear state feedback was described in 
[17-19]. The central idea of the method lies in treating the 
actuator as a force generator with an inner-loop force (or 
differential pressure) tracking controller, and a feedback plus 
feed forward outer-loop position controller that computes the 
desired force profile for the inner-loop. The inner-loop force 
controller generally comprises of a high-gain force (or 
differential pressure) feedback term in addition to positive 
velocity feedback. The latter is intended to cancel the natural 
velocity coupling of the piston motion with the pressure 
dynamics. This expectation is reasonable if flow-pressure and 
variable compliance nonlinearities could be ignored, as can 
easily be seen in the expression of the pressure dynamics (or its 
local linearization about operating points). Then, with the 
piston motion decoupled from the pressure dynamics by 
velocity feedback, the outer-loop control would provide 
compensation for external loads and friction, and enable 
tracking of the desired piston motion (position, velocity and 
acceleration). The outer-loop solves a standard motion control 
problem and may even include adaptive algorithms to 
compensate for load and parameter changes [18]. 

The same basic idea of cascading was extended to the 
realm of nonlinear control in the work of Heintze and Van der 
Welden [17], who compared an inner-loop controller based on 
dynamic inversion with a cascade controller which includes 
nonlinearity compensation in the original constant gain cascade 
form of Sepehri, et al [18]. Starting with a Lyapunov-like 
analysis, Sohl and Bobrow [10] also presented a cascade 
position tracking controller, with a nonlinear pressure force 
controller as an inner-loop. The proposals in [17] and [10] are 
similar in structure to the discussion of the nominal cascade 
control presented below. Eryilmaz and Wilson [21] arrive at a 
slightly different cascade control structure from a singular 
perturbation point of view.  

A common approach for sliding mode position tracking 
controller design involves defining a sliding manifold to 
represent well-behaved position tracking error dynamics or 
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some weighted sum of position and force tracking errors and 
their integrals [6-8, 16]. In this paper, we use the cascade 
interpretation and implement a sliding mode force tracking 
controller as an inner-loop to a feedback plus feed forward 
position controller to achieve a robust version of the cascade 
controller. 

The rest of the paper is organized as follows. We first 
describe a simplified mathematical model of the 
electrohydraulic actuator that is used for controller derivation. 
We then discuss the nominal cascade form that neglects 
uncertainty followed by the robust cascade form that considers 
parametric and measurement uncertainty. This is followed by a 
discussion of some experimental and simulation results. 
Finally, the conclusions of the paper are presented. Certain 
mathematical details are postponed to the Appendix. 

NOMENCLATURE 
Ab, At piston areas for the bottom and top chambers, 

respectively 
Ap piston area for a symmetric actuator 
CL leakage coefficient used in controller 
Cv valve coefficient used in controller 
eF pressure force tracking error  
fF nonlinear feedback term given by Eq (9) 
Ff friction force on piston 
FL load force or specimen reaction on piston 
Fp fluid pressure force on piston 
Fp,d desired or reference pressure force trajectory 
fpL nonlinear feedback term given by Eq (3) 
gF nonlinear feedback term given by Eq (10) 
gpL nonlinear feedback term given by Eq (4) 
iv servovalve current 
K gain in sliding mode controller 
ko constant gain of force error dynamics, Eq (12) 
mp lumped mass of piston, fixture and oil mass  
pb ,pt pressure in the bottom and top cylinder 

chambers, respectively 
pL load or differential pressure (pL=pb-pt) 
pR return pressure at servovalve 
pS supply pressure at servovalve 
qb, qt flow to the bottom and from the top cylinder 

chambers, respectively 
qe,b, qe,t external leakage from the bottom and top 

chambers, respectively 
qi internal leakage in cylinder 
S sliding manifold variable 
u1, u2, u3, u4 valve underlap/overlap lengths 
Vb, Vt bottom and top cylinder chamber volumes, 

respectively 
vp piston velocity 
xp piston position 
xv servovalve spool displacement 

βe effective bulk modulus 

Φ thickness of boundary layer 
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δfF, δgF bounds on the uncertain functions fF, gF, Eq (19) 

MODEL OF SYSTEM 
Physical models of electrohydraulic actuators are quite 

widely available in the literature [19, 22-24]. The model used 
here applies to a four-way servovalve close-coupled with a 
piston actuator as shown in Fig. 1. qt and qb, are flow rates from 
the top chamber and to the bottom chamber of the cylinder, 
respectively. qi represents internal leakage flow and qe,t and qe,b 
are external leakage. At and Ab represent the effective piston 
areas, and Vt and Vb designate the volumes of oil in the top and 
bottom chambers, respectively, corresponding to the center 
position (xp=0) of the piston. These include the volumes of oil 
in the short pipelines between the close-coupled servovalve and 
actuator. It is assumed that the supply (pS) and return (pR) 
pressures are constant at the ports of the servovalve. 
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Figure 1 Schematic of rectilinear servovalve and actuator 

Considering flow continuity and the state equation with the 
effective oil bulk modulus, βe, for the cylinder chambers, and 
introducing the load (differential) pressure, pL, [23], it can be 
shown that the load pressure dynamics are given by (see, for 
example, [20]) : 

vvLppLpppL iipxgpxxfP
LL

))sgn(,,(),,( += ��   (1) 

where the load pressure, pL, is: 
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Here, the external leakages, qb,e and qt,e, are neglected. 
Note that the first term on the right in Eq (3) shows the explicit 
dependence of the pressure dynamics on the piston velocity 
(motion). The second term has its roots from the cross chamber 
leakage, which is assumed to be laminar with leakage 
coefficient, CL. The expression for the coefficient of the current 
input iv, lumped into gpL, arises from turbulent flows through 
the sharp-edged control orifices of a spool valve to and from 
the two sides of the cylinder chambers. The valve is assumed to 
be matched and symmetrical (u1=u2=u3=u4=0) with valve 
coefficient Cv. Also the valve spool dynamics are assumed to be 
fast enough to be neglected for the purpose of controller 
derivation. 

The state equations governing piston motion are derived 
considering the loading model for the actuator. For the test 
system, the actuator cylinder is rigidly mounted on a load 
frame. The load frame is used as an inertial frame. For a 
symmetric actuator (Ab=At=Ap), the upward force on the 
actuator piston due to the oil pressure in the two cylinder 
chambers is given by: 

Lpp pAF =      (5) 

The friction force on the piston in the cylinder is denoted by Ff, 
and the external loadings, including specimen stiffness and 
damping forces, are lumped together in FL. In Fig. 2, FL is 
considered tensile positive. The equations of motion are derived 
by applying Newton’s Second Law: 

pp vx =�      (6) 

][
1

gmFFpA
m

v pfLLp
p

p −−−=�   (7) 

Equations (1), (6) and (7), constitute the state space model 
for the servovalve and loaded actuator subsystem under 
consideration. These equations also contain the major modeled 
nonlinearities in the system, which are the variable hydraulic 
capacitance and the turbulent flow rate versus pressure drop 
relations. Nonlinearity is also introduced in Eq (7) by the 
nonlinear friction force, which includes Coulomb, static, and 
viscous components [25]. 

CONTROL LAW DERIVATION 
 

Nominal Cascade Control 

First, we consider the case that all model parameters are 
known and we refer to this case as the nominal case.  

The pressure force dynamics are given by:  

vvLpFLppFp iipxgpxxfF ))sgn(,,(),,( += ��  (8) 

where,  
),,(),,( LppppLppF pxxfApxxf

L
�� =   (9) 

))sgn(,,())sgn(,,( vLpLppvLpF ipxgAipxg =  (10) 

A near input-output (IO) linearizing pressure force 
controller can be derived [1, 26]: 

)),,((
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, LppFFodp

vLpF
v pxxfekF

ipxg
i �� −−=     (11) 
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where Fp,d is the desired force trajectory which is assumed 
to be differentiable, and eF is the force tracking error, eF=Fp-
Fp,d. Note that the IO linearization achieved with this controller 
is only a near IO linearization, since some assumptions need to 
be imposed to solve Eq (11) across the iv=0 discontinuity of the 
sign function. In particular, during the digital implementation 
of the controller, it is assumed that the sign of the value of iv at 
the previous time step can be used to compute the value of iv at 
the current time step. This supposes that the current does not 
change signs at a rate faster than the sampling rate. However, it 
is difficult to analytically prove that this approach does not lead 
to control chatter. This chatter problem has not been previously 
reported in the literature that discusses feedback linearization 
for hydraulic drives [13, 14, 27], nor has it been experienced 
during any of the experiments performed by the authors of this 
paper. 

With the controller given by Eq (11), the force tracking 
error dynamics are given by:  

0=+ FoF eke      (12) 

where eF is the force tracking error, eF=Fp-Fp,d. Note that 
the near IO linearization has reduced the nonlinear pressure 
force dynamics to a first order linear tracking problem. With a 
proper choice of ko>0, one can obtain a desired degree of 
exponential force tracking performance, regardless of the 
nonlinearities in Eq (8), provided the internal dynamics are 
stable. 

Since the original system is of order 3, second order 
internal dynamics remain, which were rendered “unobservable” 
during the near IO linearization. It is straightforward to show 
that the piston velocity and position can be used as state 
variables to describe the internal dynamics and thereby 
establish the stability. 

The near IO linearizing pressure force controller of Eq (11) 
cancels the natural feedback of piston velocity on the pressure 
force dynamics via the first term of the nonlinear function, fF. 
This nonlinearity cancellation decouples the dynamics of the 
piston motion from the hydraulic pressure/force dynamics. The 
cascade control of piston position exploits this fundamental 
result. 

We start by constructing the desired pressure force profile 
(Fp,d) in terms of the desired piston position profile in such a 
manner that when the pressure force output is driven to the 
desired force profile, the piston position output approaches the 
desired position. Define Fp,d as: 

gmFFxxkxxkxmF pfLdppdpvdpdp +++−−−−= )()(, ����  

      (13) 

It is assumed here that accurate estimates of the friction 
force and the load force are available and the piston mass is 
known. The choice of the gains of kv and kp will become 
evident shortly. To further appreciate the choice of the form of 
Fp,d in (13), recall the equation of motion: 

gmFFFxm pfLppp −−−=��    (14) 

Combining Eqs (13) and (14), the closed loop dynamics 
can be expressed in terms of the position error, e=xp-xd: 

Fdpppvp eFFekekem =−=++ ,���   (15) 

It has already been argued that an exponentially convergent 
tracking of the pressure force can be obtained using the near IO 
linearizing controller of Eq (11). Equation (15) shows that the 
position error dynamics are given by a second-order linear 
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differential equation driven by the pressure force error provided 
there are no estimation or measurement errors for the load and 
friction forces. The gains kv and kp can be easily chosen to 
obtain the desired second-order position error dynamics and 
ensure that the closed loop system is stable.  

Figure 2 shows a schematic of the implementation of the 
nominal cascade control in the absence of uncertainty in 
friction and load force. Note that the pressure force loop acts as 
an inner-loop to the feedback plus feed forward outer loop 
position controller. 
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Figure 2 Schematic of the nominal cascade control 

Robust Cascade Control 

We now extend the nominal cascade controller described 
above to address issues of uncertainty in model parameters 
(namely, βe, Cv, CL) and measurement and estimation errors (in 
the load and friction forces, FL and Ff). 

It turns out that the near IO linearizing controller for 
pressure force tracking can be easily re-considered from a 
sliding control point of view to formally address the issue of 
robustness to parametric uncertainty. The reader is referred to 
[11] for a discussion of sliding mode control and [28, 29] for 
the derivation and experimental validation of the results briefly 
outlined here. Dropping the arguments of, and replacing the 

function fF and gF by their estimates Ff̂  and Fĝ , respectively, 
the resulting (continuous version) sliding mode controller is: 

)ˆ)/((
ˆ
1

, Fdp
F

v fSKsatF
g

i −Φ−= �    (16) 

where Φ is the boundary layer thickness and S is sliding 
surface variable defined by: 

dpp FFS ,−=      (17)    

and K is the gain, which should be chosen to satisfy 

FdpFFF fFgfgK ˆ1)( , −−++≥ �δδηδ   (18) 

where �fF and �gF are the bounds on the 
uncertainties(perturbations) in the nonlinear functions fF and gF, 
respectively, and are expressed by: 

F
F

F
FFFF g

g
g

gfff δ≤≤δ<δ≤− − ˆ
)(0ˆ 1  (19) 

Note that within the boundary layer (S≤Φ), the sliding 
mode controller given by Eq (16) is identical to the near IO 
linearizing controller given by Eq (11) in the absence of 
uncertainty.  

Sliding control can also be applied to the piston position 
tracking case. With piston position as the output, the modeled 
electrohydraulic system becomes of relative degree 3. A 
standard sliding mode controller design would start by defining 
the sliding manifold (S=0) to represent well-behaved position 
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tracking error dynamics. In this paper, however, instead of this 
standard sliding mode approaches to robust position control, 
which often require higher order derivatives of the position 
signal, it is desired to take advantage the cascade controller 
design described above. By keeping the sliding mode pressure 
force tracking control design as the inner-loop, the robustness 
of the outer-loop and the overall system is investigated.  

To this end, the desired pressure force profile given by Eq 
(13) is re-defined here considering the uncertainty in the 
estimation of load and friction forces. Replacing the load and 
friction forces by their estimates, the desired force profile is 
computed by: 

gmFFxxkxxkxmF pfLdppdpvdpdp +++−−−−= ˆˆ)()(, ����  

      (20) 

Using Eq (20) in the equation of motion of the piston, Eq 
(14), the closed loop position error, e=xp-xd, satisfies: 

)ˆˆ()ˆ( LLffFpvp FFFFeekekem −+−+=++ ���  (21) 

where eF=Fp- Fp,d is the pressure force tracking error, and 

fF̂  and LF̂ are the estimates of the friction and load force 

respectively. It is assumed that the mass of the piston is known. 
The friction force is almost always estimated from a model, 
while the load force can either be measured (with a load cell) or 
estimated from a relevant model. It should be recalled that the 
friction force is generally a function of velocity ( px� ), while the 

load force or specimen reaction is considered a damping and 
stiffness force, and therefore a function of both piston position 
(xp) and velocity ( px� ). Bounds are assumed for the uncertainty 

in friction and load forces as follows: 

LLLfff FFFandFFF δ≤−δ≤− ˆˆ   (22) 

Unlike the case where there is no uncertainty, Eq (21) 
shows that this cascade controller cannot guarantee 
convergence of the position error to zero in the presence of 
friction and load force uncertainty, even if the force tracking 
error converges to zero. The position error dynamics are driven 
by the uncertainty in friction and load force estimation in 
addition to the force tracking error. The uncertainty enters as a 
disturbance to the position loop. However, for bounded 
uncertainty, the position tracking error remains bounded. Figure 
3 shows the revised schematic for the cascade controller in the 
presence of uncertainty in the friction and load forces.  
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Figure 3 Schematic of the robust cascade control 

Even if the force loop has been made robust to the 
“matched” uncertainty in the functions fF and gF , the position 
loop is still subjected to the effects of uncertainty in friction and 
load force estimation. The problem of this “unmatched” 
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uncertainty of the force loop can be formally addressed by 
showing that the choice of the desired force output via Eq (20) 
has an interpretation from a Backstepping design point of view. 
One such Lyapunov-based analysis is shown in the Appendix. 
The approach reveals linear growth bounds that show trade-offs 
between tracking performance and the size of the unmatched 
uncertainty as sufficient conditions that render the derivative of 
the Lyapunov function candidate negative semi-definite. 
Bounded position and force tracking is achieved provided both 
the matched and unmatched uncertainty bounds are satisfied. 

EXPERIMENTS AND SIMULATIONS 
Figure 4 shows the schematic of the electrohydraulic 

fatigue testing system on which some experiments and system 
simulations were performed to evaluate the control structures 
discussed above. The servovalve is a 5 gpm (19 lpm) two-stage 
servovalve, close-coupled with a 10 kN, 102 mm-stroke 
symmetric actuator, which is mounted on a load frame. Two 
pressure transducers are used for sensing the pressures at the 
output ports of the servovalve. A linear variable displacement 
transducer (LVDT) is mounted on the actuator piston for 
position measurement.  

PumpPump

pressure
relief valve

pressure
relief valve

servovalve

actuator

Hydraulic Power Supply

Pressure line
accumulator

Return line
accumulator

Supply line

Return line

Manifold and
check-valve losses

 
Figure 4 Simplified schematic of the test system 

The Hydraulic Power Supply (HPS) unit, including its heat 
exchanger and drive units, is housed separately and is 
connected to the service manifold block via 3.048 m-long SAE-
100R2 hoses. The manifold block contains an in-line check 
valve and a filter element on the supply line; it is equipped with 
a control manifold circuitry to permit selection of high- and 
low-pressure operating modes, low-pressure level adjustment, 
slow pressure turn-on and turn-off, and fast pressure unloading. 
The supply and return accumulators are mounted directly on the 
manifold, which is in turn connected to the servovalve using 
3.048 m-long SAE-100R2 hoses. During normal fatigue testing 
operations, the manifold circuitry allows flow at full system 
pressure. A study of the complete system model, including the 
transmission hoses, the manifold and the accumulators, is 
published in [25]. It is shown there that in order to effectively 
exploit the accumulators in eliminating pressure transients at 
the supply and return ports of the servovalve, the accumulators 
should be close-coupled to the servovalve (remove the second 
set of hoses between the accumulators and the servovalve). The 
present configuration, however, does not provide for this, and 
therefore, the following simulation and experimental results for 
the control system are subject to this non-ideal condition, which 
is neglected during controller derivation. Only cases with FL=0, 
i.e, where the actuator is loaded with a known inertia load 
(mp=12kg), are considered. 

Figure 5 shows an experimental result that compares the 
robust and nominal cascade controllers. Note that while the 
design of the nominal cascade controller doesn’t take into 
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account parametric and modeling uncertainty, the robust 
cascade controller does (within bounds). During 
experimentation, it was observed that, in general, rather large 
magnitudes of K and/or � were necessary to accommodate the 
unmodeled dynamics of the transmission lines, the servovalve 
and feedback signal filters in addition to the matched and 
unmatched uncertainty. The gain, K, and the boundary layer 
thickness, �, were heuristically determined to obtain a chatter 
free response with the robust cascade controller without 
saturating the control current. For the data in Fig 5, the 
following values were set for the nominal controller (and the 
outer-loop of the robust controller): kp = 3.0x105 kg/s2, kv=2000 
kg/s, and ko=502 s-1.; and for the robust controller K=3.0x108 
kgcm/s3 and �=5000 N. The outer loop gains correspond to a 
natural frequency of 26 Hz and a damping ratio of 0.6. It can be 
seen that the performance of the robust cascade controller is 
comparable to the nominal one for just these settings, while still 
using lower control current peaks. Note that even higher values 
of K, with correspondingly higher settings for �, could be used 
to recover the nominal performance with the robust controller. 
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Figure 5 A typical comparison of the robust and nominal 
cascade controllers (experiment) 

We now return to the simulation of the system where we 
consider the desirable configuration of the system in which the 
accumulators are close-coupled with the servovalve and the 
servovalve corner frequency is 240Hz with the damping ratio of 
1.1, corresponding to the specifications of the present 
servovalve with the supply pressure at 21 MPa [30].  

As examples, we present two typical perturbations in the 
model of the electrohydraulic system to show the performance 
of the robust cascade controller in the presence of uncertainty. 
For the simulations, the outer-loop position controller is 
designed to have a natural frequency of 50 Hz and a damping 
ratio of 1.0, corresponding to kp=1.1x106 kg/s2 and kv= 7000 
kg/s. Starting values of the sliding control gain K can be 
estimated from Eq (18) for the force inner-loop, and 
subsequently tuned, together with the value of �, by looking at 
the tracking error dynamics and the control activity. For the 
cascade controller considered in this section, the choices are 
K=3x108 kgcm/s3 and �=3000 N. 

As a first case, the value of the valve coefficient Cv of the 
actuator is underestimated in the controller by 10%. That is, the 
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value of Cv in the model of the actuator is increased while a 
nominal value of Cv is used in the controller. Also, consider at 
the same time that the friction in the actuator is 100% higher 
than the estimate used by the controller. Figure 6 shows the 
simulated tracking performance of the robust cascade controller 
under these perturbations. For comparison, the case of perfect 
knowledge (no perturbation) by the robust controller is also 
shown. It can be seen that the robust controller gives bounded 
tracking errors, unlike the non-robust cascade (or near IO 
linearizing) controllers which drive the tracking error to zero. 
Recall that with the robust cascade controller, boundedness of 
the tracking error is all that is guaranteed. The boundary layer 
thickness � helps tune this bound on the tracking error. It can 
also be seen that the robust controller uses slightly lower 
current peak to give a slightly smaller peak position tracking 
error. This is generally not the case with the other position 
controllers discussed so far. As will be shown in the next case, 
neither is this the universal trend with the robust cascade 
controller. 
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Figure 6 Tracking performance of the robust cascade 
controller with valve coefficient and friction perturbations 
(simulations) 

As a second and special case that involves the transmission 
lines, consider the supply line pressure at the pump to drop to a 
level 20% lower than the nominal value of 21MPa set in the 
cascade controller. Consider also that the servovalve response 
is slower with corner frequency of 200 Hz. Figure 7 shows the 
simulation results for this case. It can be seen that even for this 
case of the supply pressure uncertainty, the robust cascade 
controller does a decent job at tracking this particular reference 
trajectory in the presence of the perturbations. Note also that 
the current peak and the tracking error are both higher in the 
perturbed case. 
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Figure 7 Tracking performance of the robust cascade 
controller with supply pressure perturbation and slower 
servovalve dynamics (simulations) 

CONCLUSION 
Starting from a feedback linearization framework, a 

nonlinear cascade controller was derived in this paper. The 
nominal case implements a near IO linearizing pressure force 
controller as an inner-loop to the feedback plus feed forward 
outer loop position controller where all model parameters are 
assumed known. It was shown that the cascade controller 
exploits the decoupling of the pressure dynamics from the 
piston motion dynamics by cancellation, during the near IO 
linearization, of the natural feedback of piston velocity in the 
pressure force dynamics.  

By explicitly considering uncertainty in the model 
parameters (βe, Cv, CL) and measurement and estimation errors 
in the load and friction forces (FL and Ff), a robust cascade 
controller was derived. It implements a sliding mode inner-loop 
force controller with an outer-loop position controller 
generating the desired pressure force for the inner-loop. It is 
discussed that this robust cascade controller can be analyzed 
from a Lyapunov Backstepping design perspective. It turns out 
that when the uncertainty magnitudes satisfy certain conditions, 
the robust cascade controller keeps the position tracking error 
bounded (and does not necessarily drive it to zero).  

An experimental result was shown comparing the robust 
cascade controller with the nominal cascade controller. And 
two perturbation cases were simulated to show the tracking 
performance of the robust cascade controller.  

Future work will implement the controllers presented in 
this paper on an experimental system that is influenced less by 
transmission line and spool valve dynamics thereby satisfying 
the assumptions under which the controller derivation was 
conducted.  
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APPENDIX 
To show the backstepping interpretation, start by re-writing 

the system equations including uncertainty in friction and load 
force as follows: 

pp vx =�      (A1) 

))ˆ(ˆ)ˆ(ˆ(
1

gmFFFFFFFp
m

v pfffLLL
p

p −−+−−+−=�  (A2) 

vFFp igfF +=     (A3) 

This system is in the so called Strict Feedback Form [12, 
31]. Starting with the first two equations, the pressure force, Fp, 
can be considered as the input and the following Lyapunov 
function candidate can be taken: 

22
1 )(

2
1

)(
2
1

dppdpp vvmxxkV −+−=  (A4) 

Using the choice of the desired force trajectory given 
before (Eq 20), the derivative of V1 reduces 
to:

))](ˆ()ˆ([)( 2
1 dpffLLFdpv vvFFFFevvkV −−+−++−−=�

      (A5) 
Using the notation S for the sliding manifold, a Lyapunov 

function candidate for the whole system can be written as: 

2
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2
1 2
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2
1

FeVSVV +=+=    (A6) 

where S satisfies the sliding/reaching condition:  

+ℜ∈ηη−≤ SS
dt
d

)(
2
1 2    (A7) 

Then, the derivative of the function V satisfies: 

FdpffLLFdpv evvFFFFevvkV η−−−+−++−−≤ ))](ˆ()ˆ([)( 2�

      (A8) 

When the uncertainty is such that the bounds defined by Eq 
(22) satisfy the condition: 

+ℜ∈α−α≤+δ+δ dpFfL vveFF  (A9) 

the inequality given by Eq (A8) becomes:  

Fdpv evvkV η−−α−−≤ 2))((�   (A10) 
 

nloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 05/30/2015 T
For kv≥α, V� is rendered negative semi-definite with the 
control laws given by Eqs (16) and (20) and the uncertainty 
bounds given by Eqs (18 ) and (A9). Recall that, when the 
matched uncertainty bounds satisfy Eq (18), the pressure force 
tracking error is driven to the boundary layer |eF| ≤ � in finite 
time by the “continuous” sliding mode controller. If, in 
addition, the unmatched uncertainty can be bounded as in Eq 
(A9), i.e., to within a compromise linear growth bound that 
depends on the (acceptable) velocity tracking error, the 
derivative of the Lyapunov function V� is negative semi-
definite. Bounded position velocity and force tracking is 
achieved provided both the matched and unmatched uncertainty 
bounds are satisfied.  
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